The Effect of Ethanol Addition to Gasoline Fuel: A Comprehensive Analysis of Performance, Emissions, and Material Compatibility Based on Literature Studies
DOI:
https://doi.org/10.65254/ijese.v3i1.49Keywords:
Corrosion; Engine Performance Ethanol; Exhaust Emissions; GasolineAbstract
Background: Using bioethanol as an oxygenate additive in gasoline shows an increasing trend driven by the need for renewable fuels and efforts to mitigate exhaust emissions.
Purpose: This study aims to conduct a critical and comprehensive synthesis of the positive and negative impacts of ethanol addition, focusing on engine performance, exhaust emissions, and material compatibility.
Design/methodology/approach: The method used was a systematic literature review of primary scientific journals indexed by Scopus and SINTA.
Findings: The analysis results show a dualism of impacts: on the one hand, adding ethanol consistently increases engine torque and power and significantly reduces carbon monoxide (CO) and hydrocarbon (HC) emissions. On the other hand, this is offset by the potential for increased fuel consumption due to the lower energy density of ethanol, ambiguous effects on nitrogen oxide (NOx) emissions, and the emergence of serious challenges related to corrosion of metal components and degradation of elastomer materials.
Implication: These findings imply that adopting ethanol blends requires a holistic approach, including engine design optimization and improved material specifications in fuel systems to ensure long-term durability and safety.
Paper type: Literature review
Downloads
References
Abdullah, N. R., Syarifuddin, M., Zaharin, M., Mohd, A., Bin, I., & Nawi, M. R. (2015). Effects of ethanol blends on gasoline engine performance and exhaust. Jurnal Teknologi, 11(October), 107–112.
Al-Hasan, M. (2003). Effect of ethanol-unleaded gasoline blends on engine performance and exhaust emission. Energy Conversion and Management, 44(9), 1547–1561. https://doi.org/10.1016/S0196-8904(02)00166-8
Baek, C. (2021). Unemployment effects of stay-at-home orders: Evidence from high-frequency claims data. Review of Economics and Statistics, 103(5), 979–993. https://doi.org/10.1162/rest_a_00996
Bawase, M., Baikerikar, A., & Saraf, M. R. (2013). Material compatibility of elastomers and plastics in ethanol-blended (E10) gasoline. SAE Technical Papers, 5. https://doi.org/10.4271/2013-26-0077
Brito-Franco, A., Uruchurtu, J., Rosales-Cadena, I., Lopez-Sesenes, R., Serna-Barquera, S. A., Hernandez-Perez, J. A., Rocabruno-Valdes, C., & Gonzalez-Rodriguez, J. G. (2020). Corrosion behavior of al in ethanol-gasoline blends. Energies, 13(21). https://doi.org/10.3390/en13215544
Dhaliwal, J. S., Negi, M. S., Kapur, G. S., & Kant, S. (2014). Compatibility Studies on Elastomers and Polymers with Ethanol Blended Gasoline. Journal of Fuels, 2014, 1–8. https://doi.org/10.1155/2014/429608
Gunawan, L. Van, & Effendy, M. (2019). Pengaruh Campuran Bioetanol Biji Durian pada Bahan Bakar Pertalite terhadap Performa Mesin dan Emisi Gas Buang Kendaraan. Rotasi, 21(2), 76. https://doi.org/10.14710/rotasi.21.2.76-81
Kass, M. D., Janke, C., Theiss, T., Pawel, S., Baustian, J., Wolf, L., & Koch, W. (2014). Compatibility Assessment of Plastic Infrastructure Materials to Test Fuels Representing Gasoline Blends Containing Ethanol and Isobutanol. SAE International Journal of Fuels and Lubricants, 7(2), 457–470. https://doi.org/10.4271/2014-01-1465
Koç, M., Sekmen, Y., Topgül, T., & Yücesu, H. S. (2009). The effects of ethanol-unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine. Renewable Energy, 34(10), 2101–2106. https://doi.org/10.1016/j.renene.2009.01.018
Manikandan, K., Walle, M., & Professor, A. (2013). The Effect of Gasoline-Ethanol Blends and Compression Ratio on SI Engine Performance and Exhaust Emissions. International Journal of Engineering Research & Technology, 2(10), 3142–3153.
Matějovský, L., Staš, M., & MacÁk, J. (2021). Electrochemical corrosion tests in low-conductivity ethanol-gasoline blends: Application of supporting electrolyte for contaminated E5 and E10 fuels. ACS Omega, 6(27), 17698–17708. https://doi.org/10.1021/acsomega.1c02320
Nofendri, Y. (2018). Pengaruh Penambahan Aditif Etanol Pada. April, 33–39.
Pawel, S. J., Thomson, J. K., Wilson, D. F., Kass, M. D., Meyer III, H. M., & Haynes, J. A. (2012). Engine Materials Compatibility with Alternate Fuels. May, 17. http://www1.eere.energy.gov/vehiclesandfuels/pdfs/merit_review_2012/propulsion_materials/pm039_pawel_2012_o.pdf
Rifal, M., Pido, R., & Dera, N. S. (2022). Pengaruh Campuran Bahan Bakar Ethanol Bensin Terhadap Konsumsi Bahan Bakar Dan Emisi Gas Buang Pada Kendaraan Bermotor 125 Cc Sistem Injeksi. Gorontalo Journal of Infrastructure and Science Engineering, 4(2), 50. https://doi.org/10.32662/gojise.v4i2.2035
Romadhon, R. F., & Suhariyanto, S. (2024). Analisis pengaruh celah busi dan penambahan etanol terhadap unjuk kerja dan emisi gas buang pada motor Satria FU 150. Sultra Journal of Mechanical Engineering, 3(2), 70–80. https://doi.org/10.54297/sjme.v3i2.692
Rosady, S. D. N., Wafa, A. K., & Sari, E. N. (2023). Pengaruh Penambahan Etanol Pada Bahan Bakar Pertalite Terhadap Performa Mesin Empat Langkah 150 Cc. Jurnal Inovasi Teknologi, 1(2), 78–83. https://jurnal.poliwangi.ac.id/index.php/jinggo/article/view/68%0Ahttps://jurnal.poliwangi.ac.id/index.php/jinggo/article/download/68/51
Samawa, J., & Mufarida, N. A. (2022). Pengaruh Variasi Campuran Bioetanol dan Pertamax terhadap Performa Motor Sport 4 Langkah 150 cc Injeksi. J-Proteksion, 6(2), 35–40. https://doi.org/10.32528/jp.v6i2.6091
Setiyo, M., Saifudina, Jamina, A. W., Nugrohoa, R., & Karmiadjib, D. W. (2018). Jurnal Teknologi THE EFFECT OF SURFACE HETEROGENEITY ON OF. Jurnal Teknologi, 80(6), 19–25.
Suanggana, D., Radyantho, K. D., & Puspitasari, D. A. (2023). Efek Penambahan Etanol Pada Bahan Bakar Pertamax Terhadap Performa Motor Satria F 150. Dinamika Teknik Mesin, 13(2), 116. https://doi.org/10.29303/dtm.v13i2.702
Sugiyono. (2019). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Alphabet.
Sulistyo-Basuki. (2010). Metodologi Penelitian. Penaku.
Templier, M., & Paré, G. (2015). A Framework for Guiding and Evaluating Literature Reviews Mathieu. Communications of the Association for Information Systems, 37(1), 91–106.
Thangavelu, S. K., Ahmed, A. S., & Ani, F. N. (2016). Corrosive characteristics of bioethanol and gasoline blends for metals. International Journal of Energy Research, 40(12), 1704–1711. https://doi.org/10.1002/er.3555
Yücesu, H. S., Topgül, T., Çinar, C., & Okur, M. (2006). Effect of ethanol-gasoline blends on engine performance and exhaust emissions in different compression ratios. Applied Thermal Engineering, 26(17–18), 2272–2278. https://doi.org/10.1016/j.applthermaleng.2006.03.006
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Pardomuan Robinson Sihombing

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.










